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Programming Cellular Permutation Networks
Through Decomposition of

Symmetric Groups
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Abstract-A fundamental problem in interconnection network
theory is to design permutation networks with as few cells as
possible and a small programming or setup time. The well-known
networks of Benes and Waksman have asymptotically optimal
cell counts, but the best setup algorithm available for such
networks with n inputs requires O(n log2 n) sequential time. As
an alternative, this paper considers another class of permutation
networks which are collectively referred to as cellular permuta-
tion arrays. Using a group theoretic formulation, a natural
correspondence is established between such permutation net-
works and iterative decompositions of symmetric groups through
cosets. Based on this correspondence, the setup problem is
reduced to iteratively determining the leaders of the cosets to
which the permutation to be realized belongs. This, in turn, leads
to linear-time setup algorithms for cellular permutation arrays.
The paper describes these algorithms in detail for two families of
cellular permutation arrays reported in the literature.

Index Terms-Cellular permutation array, control algorithm,
coset, group decomposition, permutation group, permutation
network, symmetric group.

I. INTRODUCTION
DURING the last two decades, the researchers in

interconnection network theory have concentrated their
efforts on n-input networks with 0(n log2 n) binary switches
or cells, in view of the fact that such structures are optimal
with respect to the number of their switches [2]-[4], [8], [9],
[14], [20]-[26]. As a consequence of these efforts, asymptoti-
cally optimal networks, such as Benes-Waksman-Joel con-
structions were discovered [3], [8], [24], and other 0(n log2
n) networks, such as baseline, omega, and cube networks,
which can be made rearrangeable by feedback connections
have been proposed [4], [10], [18], [20], [25], [26].' The
discovery of asymptotically optimal permutation networks is a
celebrated result in interconnection network theory. However,
as profound as this discovery may be, it has also led to an
interesting paradox. The recent research results [11], [131,
[17]-[19], [25], [26] appear to conjecture that determining the
states of the switches of these networks to realize a specified
permutation requires at least order of n log2 n sequential time
which contrasts with 0(log2 n) data propagation delay in such
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networks. Clearly, this mismatch makes overlapping the data
propagation with the decoding of permutations very difficult
and overall setup time remains asymptotic to n log2 n. As a
remedy, the setup time can be brought down to 0_(Qog2 n) by
using an n-processor computer whose processors are intercon-
nected by a complete graph [13]. However, it seems cost
ineffective to use an n-processor computer which requires
0(n2) connections to setup a network with 0(n log2 n)
switches. Our remark also remains valid for other parallel
setup algorithms suggested in [11], [13].
The foregoing discussion indicates that optimizing the

performance of a permutation network over the number of its
switches alone is not necessarily the best strategy, and that one
must also consider the control aspect of the problem. With this
as a basis, we consider another class of rearrangeable
networks which are collectively referred to as cellular permu-
tation arrays [1], [5], [6], [12], [15], [16], [21]-[23]. Despite
the fact that these networks may require up to 0(n2) switches,
they have several attractive features. First, cellularity implies
local connections and no criss-crossings between cells as in
0(n log2 n) networks. All interconnections are confined into
cells which can easily be implemented. Second, as we
demonstrate in the paper, an n-input cellular permutation array
can be setup or programmed in 0(n) sequential time. This
result combined with the fact that such a network has also
0(n) propagation delay leads to the design of a simple control
unit which overlaps data propagation with permutation decod-
ing efficiently. Consequently, the total delay for realizing
arbitrary permutations remains asymptotic to n. Finally, the
cellular permutation arrays considered in this paper have a
triangular geometry which makes them very attractive for
VLSI implementation since the data path and control unit can
compactly be placed on a rectangular grid as described in [12],
[17].
The paper is organized as follows. Section II provides the

algebraic notation and background which form the basis for
the setup algorithms presented in subsequent sections. More
specifically, permutations groups, cosets, and iterative decom-
positions of symmetric groups through cosets are described. In
Sections III and IV further characterizations of these decompo-
sitions via specific maps such as transpositions and cycles are
given. It is shown that there is a natural correspondence
between iterative coset decompositions of symmetric groups
and cellular permutation arrays. In Sections V and VI, this
correspondence is utilized to develop linear time algorithns for
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programming cellular permutation arrays. The design of a
control unit for decoding specified permutations is given in
Section VII and the paper is concluded in Section VIII.

II. BASIC CONCEPTS

A permutation network is a triplet (S, D, P) where S(D) is
a set of symbols called input(output) terminals, and P is a set
of one-to-one maps from S onto D. The sets S and D may
represent physically disjoint sets of input and output terminals
as in two-sided networks such as telephone networks or
connectors between processor elements and memory units in
array processors, or they may correspond to the same set of
terminals as in one-sided permutation networks such as those
that interconnect processor elements in array processors.
Since we shall primarily be concerned with the maps from S
to D rather than the actual physical locations that S and D
represent, we identify the terminals by integers 1, 2, , n,
and let S = D = { 1, 2, * * *, n }. Accordingly, the elements of
set P will be viewed as permutations over { 1, 2, , n

Let i, j E S and p E P. We shall write (i)p j to imply
that i is moved to j under map p. Furthermore, we shall
compose maps from left to right so that for permutations p and
q over S, p q is defined as ((s)p)q for all s E S. Both cycle
and two-row matrix forms will be used to represent permuta-
tions [7]. Thus, we write p = (sIs2 ... sr) for some sl, s2,

,SrE S; 2 c r c ntoimplythat(si)p = si+1 s i c r
- 1 and (sr)p = sl, and represent the same map in two-row
matrix form as

(sis2 ... Sr Sr+lSr+2 ... Sn

S2\S3 . S1 Sr+ 1Sr+2 Sn

where si E S - {sj, s2, * * *, sr}; r + 1 < i < n. It is known
that any permutation can be expressed as a product of disjoint
cycles, and that this product is unique, except for the order of
its cycles.
The set of all permutations over S forms a group, called the

symmetric group of degree n, and denoted by E, or YS to
emphasize the set S where lI = n!. A permutation network
is called a permuter or a rearrangeable network if its set of
permutations is all of En. A rearrangeable networl can be
constructed in several ways [1]-[4], [8], [9], [14], [20]-[26].
The n-input permuters considered in this paper are constructed
by decomposing the symmetric group Yi into the cosets of i-I
in Yi;= 2, 3, , n [15].

Let (G,.) be a group and (H,.) be a subgroup of G. The set
of elements h.g for all h E H and fixed g E G is called a
right coset ofH in G, and denoted Hg. Similarly, the set of
elements g* h for all h E H and fixed g E G is called a left
coset of H in G, and denoted gH. The number of right (left)
cosets of H in G is called the index ofHin G. The following
results from group theory [7] form the basis for the decompo-
sitions of In which we shall use throughout the paper.

Proposition 1: Two right (left) cosets ofH in G are either
disjoint or identical.

Proposition 2: The number of elements in a right (left)
coset of H in G is equal to the number of elements in H.
Furthermore, the number of elements in G is equal to the

product of the index ofH in G and the number of elements of
H.
We shall write G = He + Hg2 + Hg3 + + Hgk

where e is the identity element of G and k is the index ofH in
G, to imply that the right cosets H, Hg2, ..., Hgk are
pairwise disjoint, and that they span all of G. The elements e,
g2, g3, * * *, gk are called the right coset leaders of H in G.
Similarly, we shall write G = eH + g2H + g3H + * +
gtH for left cosets ofH in G, and call e, g ', g3',* * * g the
left coset leaders ofH in G. Note that h 'gi for any h E H is
also a right coset leader of Hgi; 1 c i c k since H(h.g,) =
Hg,. Similarly, g1' .h for any h E H is a left coset of g',H; 1
c i c k since (g/'.h)H = g/H.

It is seen that cosets form a basis for decomposing any finite
group into a collection of disjoint sets of elements. This
decomposition is unique up to the subgroup H and its coset
leaders in G. These facts were used in [15] to transform
symmetric groups into rearrangeable permutation arrays.
Here, we shall consider two decompositions of En which are
easily transformable to cellular permutation arrays and are
corollaries of the following general observation.

Theorem 1: Let Pl, P2, * p, E n

(1)

if andonlyif(n)pi * (n)pjforalli,j;I < -ii*< n,and

(2)En=Plyn-l +P2-n-l + +PnEn-I

if and only if (n)p,- * (n)p -1for all i,j; 1 < i * j c n.
Proof: Consider the first part of the statement. Observe

that every permutation in En, maps n to n, and hence every
permutation in En- lpi must map n to (n)pi and that in En- lpj
must map n to (n)pj. But (n)pi * (n)pj by hypothesis, and
hence En- ,pi nf - ipj = 4?. Furthermore, since this is true
for all i, j; 1 c i . j c n, the sufficiency follows. To prove
the necessity, suppose for some i, j; 1 c i * j < n, En--pi n
En- lp = 4,, and (n)pi = (n)pj. Then (n)pip-' =
((n)pA)Pj-1 = ((n)pj) -1 = n, and hencep1 E En 1 or
pi E En- Ipj. But this contradicts the assumption that E. LPi
n En- IPj = 4) sincep, E En- Pi. We conclude that (n)pi *
(n)pj for all i, j; 1 c i * j $ n. The second part of the
statement is argued similarly.

Intuitively, the rationale behind the above theorem is that
the permutations in E, are partitioned to the cosets of E,-1
according to where the symbol n is mapped to in the case of
right cosets and where it is mapped from in the case of left
cosets. Those permutations that map n to n form En- 1, those
that map n to 1 form En- lPi where (n)pI = 1, those that map
n to 2 form En-1P2 where (f)P2 = 2 and so on. The only
constraint on maps Pl, P2, , p, is that they map n to
different symbols. Similarly, in the case of left cosets, those
permutations that map n form Yn - 1, those that map 1 to n form
P ln-1, where (1)pI = n, those that map 2 to n formp2En_-
where (2)p2 = n, and so on. This idea is pictured for right
cosets more concretely in Fig. 1.
The decompositions that are given in the next two sections

are based on these observations and results.
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E =

n
1

Fig. 1. Decomposition of YEn into the right cosets of En- ; pl = e; (n)p =
- 1; 2 c i c n.

III. DECOMPOSITION WITH TRANSPOSMONS

Consider the symmetric groups E2, E3 * . It follows
from Theorem 1 that

Zn=1n-je+E,_j(1 n)+E-l((2n)+ - * E-) l(n-1 n)

'En- I = En-2e + En-2l n-1) + En-_2(2 n-1)

(3)

Z3= Y22e + E2(13) + X2(23)

12=le, (12)}.

Similarly,

;n = eZn- 1 +(1 n)En- 1+ (2 n)En_ 1+ * **(n- I n)Zn-
n -1=en-2 + (I n-I)En-2 + (2n-) 2

+ *+(n-2 n-1)Yn-2

(4)

Z= eZ2 + (13)Z2 + (23) 2

2= {e,- (I12)}.

Equations (3) and (4) are the iterative decompositions of In
into the right and left cosets of )n - 1, Fn - 2, * 2*
respectively. In both cases, the identity permutation, e and
transpositions (i j); 1 c i Ij - 1 are the coset leaders of
Ej- in Ej; 3 cj c n. These two decompositions are the
group theoretic representations of what are known as regular
and reverse triangular permutation arrays with binary switch-
ing cells [15]. In order to see this relation in concrete terms,
the triangular arrays for n = 5 are depicted in Fig. 2. In
accordance with the terminology introduced in [15], [17], we
shall refer to these two networks as KLW and reverse KLW
networks.

Let us further consider the 5-input KLW network depicted
in Fig. 2(a). It is -seen that the cell in the left most column can
be set to either of the maps e and (12), and hence the first
column realizes Z2. Moreover, we can set the cells in the
second column from the left to permutations e, (13), (23) and
(13) (23). Of these four maps, the first three are the right coset
leaders of E2 in Z3. Consequently, the first two columns of
cells realize Z3 -22e + Z2(13) + 12(23). Note that the map
(13)(23) = (123) is not needed in the realization. Thus, 13 iS
realized by setting at most one cell of the second column to a
transposition map at a given time. The same observations can

(23) (24) (25, '

\ _3~~~~~~~~~
(a) KLW network

e 4

(a) 5
5

4 (45)

(b) Reverse KLW network

e e
3 (35) (34)

2 _ e

5 4 3 2

(b)
Fig. 2. 5-input triangular permutation networks.

be made about the third and fourth columns from which we
conclude that the entire network must realize 5. The relation
between n-input reverse KLW network and the left coset
decomposition given in (4) is demonstrated similarly.

IV. DECOMPOSITION WITH CYCLES

It is also possible to decompose En iteratively into the cosets
of Ej; 2 c i < n - 1 by using cycle maps as coset leaders.
Using Theorem 1, it can be shown that

in=In-le+n-1(n n- l)+ .-l(n n-2 n- 1)
+ +1E-Y(n 1 2 ... n- 1)

En- I = In-2e + Fn-2(n - I n - 2) +Yn-2(n - 1 n - 3 n - 2)
+ +0-2(n-112 n-2)

(5)

13 = E2e + Z2(32) + E2(3 12)

I

E P I E E E,
n-1 n-lP2 n-lP3 n-lpn

I I I I I
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2

5

4

3

2
1

(a) BBC network

(b) Reverse BBC network

Fig. 3. 5-input cascade permutation networks.

Similarly,

1.

+ +(n-1 n-2 ... 2l )En-2

(6)

3 = eZ2 + (32)Z2 + (321)Y2

>2 ={e, (12)}.

The above decompositions are the group-theoretic represen-
tations of what are known as BBC and reverse BBC networks,
respectively [15]. As an example, we depict the 5-input BBC
and reverse BBC networks in Fig. 3. The cycle maps shown
inside the cells with three or more inputs are coset leaders,
while the cells with two inputs realize E2. Although the
connections inside the cells are not explicitly shown, cycles
define these connections completely. For example, the cycle
(5234) in the rightmost cell in Fig. 3(a) implies that inputs 5,
2, 3, and 4 are connected to outputs 2, 3, 4, and 5,
respectively, and input 1 is connected to output 1. The entire
cells is designed by establishing the connections dictated by all
the permutations it must perform.

Note that the total number of permutations in both n-input
BBC and KLW networks is n (n - 1)/2 and equal to the
number of coset leaders that appear in the iterative decomposi-
tions (3)-(6). The main difference between the two realiza-
tions is in how many permutations are packed into each cell. In
a KLW network each cell contains exactly one coset leader
while in a BBC network, cells may contain up to n
permutations. This fact accounts for the difference between
the numbers of cells in the two realizations. In fact, one can
distribute coset leaders over cells in a variety of ways. The
interested reader is referred to [15] for other alternatives.

V. SETUP PROCEDURE FOR KLW NETWORKS
In this section we shall describe procedures to set up KLW

networks for arbitrary permutations. Recall from (3) that the

Fig. 4. 8-input KLW network shown to realize p = (1426)(385).

jth column of n-input KLW network is programmable for each
of the coset leaders in the set Qj = {e, (1j+ 1), (2j+ 1),
. . ., (jj + 1) } where the ith transposition (i j+ 1) is located
in the ith row and jth column of the network. With this
characterization, each map of n-input KLW network can be
expressed as a product qjq2 ... qn-1 for some qj E Qj; 1 c i
< n - 1. As an example, for the 8-input KLW network
shown in Fig. 4, if we let q, = (12), q2 = e, q3 = (24), q4 =
(35), q5 = (16), q6 = e, and q7 = (58), the network realizes
the mapql q2 q7= (12)(24)(35)(16)(58) = (1426)(385).
Based on this observation, Oruc and Prakash [16] developed
an algorithm for programming KLW networks for arbitrary
permutations. The serial time complexity of that algorithm
was shown to be in the order of n log2 n for n-input KLW
network. Here we present an algorithm whose serial time
complexity is linear in n.

First consider an example. Let n = 16 and p = (14)(2 7
9)(3 6 5 8). Start with symbol 9, and write p = pi (9 (9)P)-
Determine pm from this expression as Pi = p- (9 2) =
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(14)(27)(3658). Note that 9(p1) = 9. Consequently, p is
decomposed into two permutations one of which is a coset
leader which belongs to a cell in the last column of 9-input
KLW network, and another which is a permutation in 8, and
hence should be realizable by the first seven columns of that
network. Another way to state this is that p = p .(9 2) is
located in the right coset E8(9 2) with p1 E 8. Now repeat the
same process for p1 and symbol 8 by letting Pi = P20(8 (8)pj)
= p2.(8 3). Determine P2 from this expression as P2 =

(14)(27)(365). Now, notice that p1 is decomposed into p2.(83)
where P2 E E7. As a result p is decomposed into P2.(83)(92)
with P2 E E7. Thus, if this decomposition process is repeated
for P2, P3, and so on up to p7 E 2, we obtain p =

ee(41)(53)(65)(72)(83)(92). The map p is then realized by
setting the cells of 9-input KLW network according to the
coset leaders that appear in the decomposition.
The steps described above can be stated formally as in the

following recursive procedure, wherein i is initialized to n

before the procedure starts, and f denotes the decomposed
form of p.

Procedure KLWFACTOR (p, i; varf, q);
Ifi=

then
f:=e

else begin
q: = (i (i)p);
p: =p.(i (i)p);
f: = KLWFACTOR (p,i- 1).q;
endbegin;

endif;
endprocedure;

We note that the above procedure differs from the algorithm
given in [16] in two respects. First, unlike that algorithm it
requires no sorting, and furthermore it works with the entire
permutation instead of its cycles. The symbol which specifies
the coset leader for a column is determined according to the
fixed sequence n, n - 1, ..., 1, once i is initialized to n.

Hence, no sorting is necessary. Consequently, the procedure
terminates in O(n) steps where each step involves a composi-
tion, i.e., p = p.(i (i)p); 1 c i c n and, a call to the
procedure. Everytime KLWFACTOR is called, the map p is

factored into a coset leader and a new permutation p: = p(i
(i)p) which is known to be in the right coset ,_1.(i (i)p).
This process repeats itself until i = 1. We remark that it is
possible to tighten KLWFACTOR by avoiding the composi-
tionp.(i(i)p) when it is not necessary. There are two cases for
which this composition becomes redundant; when (i)p = i
and, when i appears in a transposition of p. Avoiding the
composition for these two cases can improve the running time
ofKLWFACTOR considerably and can easily be inserted into
the procedure by simple if statements.

Procedure KLWFACTOR can be modified to program n-

input reverse KLW network. Simply replace in that procedure
q:= (i(i)p)byq:= (i(i)p-1),p := p qbyp:= q p, and
f:= KLWFACTOR(p, i - 1) qbyf:= q KLWFACTOR
(p, i - 1). The reader may easily verify that (i (i)p'-) is the

appropriate left coset leader for decomposing p into the cosets

of Y1- 1 in Xi; 3 < i c n and that the modified procedure also
takes 0(n) steps to run.

VI. SETUP PROCEDURE FOR BBC NETWORKS

The setup procedure given in the preceding section can be
extended to programming BBC and reverse BBC networks.
Recall from (5) that the ith stage of n-input BBC network is
programmable for each of the coset leaders in the set

Pi= {e, (i+ l i), (i+ 1 i- I i), **, (i+ 1 12 3 .. i)};

I li.n- 1.

Unlike the cells of a KLW network, each cell of a BBC
network is programmable for the identity and a number of
cycle maps over its terminals. Thus, instead of decomposing a
specified permutation p into a product of transpositions, we
must factor it into an appropriate product of cycles which are
coset leaders of Ei-1 in Xi; 3 ' i c n.
As an example, let n = 6 andp = (1325)(46). We factorp

into the coset leaders of Ei- I in Xi; 3 ' i c 6 as follows. Start
with symbol 6 and write p = Pr*(6 (6)p * 4 5) or p =
P, * (645). Determine Pi from this expression as Pi =
p (645)1 - (13245) and note that (6)pl = (6)p*(645)1 =
6. Consequently, p = pi (645) is located in the right coset
Z5 - (645) of Z6 with Pi E Es. Now repeat the same process for
Pi and symbol 5. That is, letp, = P2 (5 (5)p ... 34) orpi =
P2 (51234) and solve P2 from this expression as P2 =
Pi * (51234) 1 = (123). As a resultp is determined to be in the
coset S4(51234)(645) withp2 E Z4. Arguing similarly, it is, in
general, shown that if pi = pi+I(n-i(n-i)pi ... n - i
- 3 n - i - 2 n - i- 1); 0 c i c n - 2 then n - i remains
fixed under Pi+,. Thus, if the above process is repeated three
more times we factorp asp = e(312)e(51234)(645). The map
p is then realized by setting the cells of 6-input BBC network
according to the coset leaders in the decomposition.
The steps of the above example can be generalized into the

following recursive procedure wherein f denotes the decom-
posed form ofp, and i is initialized to n before the procedure
starts.

Procedure BBCFACTOR (p, i; varf, q);
If i= 1

then
f:=e

else begin
q:-=(i (i)p .. *i-3 i-2 i- 1)
p:=p -(i(i)p .. *i-3 i-2 i- I)-'
f:-BBCFACTOR(p,i-1) * q
endbegin;

endif;
endprocedure;

Procedure BBCFACTOR can be modified to program n-
input reverse BBC network by replacing q = (i (i)p * * -
3 i-2 i-l) by q (i i-l i-2 ... (i)p-1), p p (i
(i)p ... i-3 i - 2i-1)-1 by p := (ii-l i-2 *e
(i)p- I)-1*p andf: = BBCFACTOR (p, i - 1) - q byf: = q'
BBCFACTOR (p, i- 1). The reader may verify that both
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BBCFACTOR and its modified version terminate in 0(n)
steps.

VII. PERMUTATION DECODING AND CONTROL

The setup procedures presented in the preceding sections
can be implemented by a simple control unit. In order to
provide a detailed description but otherwise without loss of
generality, we shall discuss the design of a control unit for a,
reverse KLW network. There are two reasons for this choice.
First, there is a straightforward, one-to-one correspondence
between the addresses and maps generated by the control unit
of such a network and the coordinates of the cells to be
programmed. Second, when factorizing a permutation into the
coset leaders residing in the cells of a reverse KLW network,
we begin with the leftmost column where the data enter the
permuter and proceed to the right one column at a time until
the last column. As a result, the data and factorization
advances in the same direction. This situation allows for
overlapping the factorization with data propagation, and thus
eliminates the extra setup time which would otherwise be
necessary. It can easily be shown that it takes an n-input
cellular permutation array n steps to complete its operation
with overlapping and 2n steps without overlapping. We
remark that reverse BBC networks behave like reverse KLW
networks and are also suitable for overlapping. On the other
hand, neither KLW nor BBC networks, possess this overlapping
property since in both cases, the data and permutation
factorization proceed in opposite directions.
The control unit for a reverse KLW network is organized as

shown in Fig. 5. It consists of a factorizer and two decimal
decoders. The factorizer iteratively decomposes the specified
permutation into a product of coset leaders which are
transpositions realizable by the network. Whenever a transpo-
sition is factored out, the R and C inputs of the row and
column decoders, respectively, are fed with the symbols
which appear in that transposition. Consequently, the appro-
priate decoder outputs activate the column and the row at the
intersection of which the cell containing that transposition is
located.

In order to see how the factorization is performed in detail,
recall from the modified version of KLWFACTOR that the
specified permutation p is factored by successive compositions
p = (i(i)p -1).p; i = n, n - 1, - * , 2. Let Pold and pnew
denote the map p before and after the composition, respec-
tively. It is easily verified that (i)pnew = i; ((i)P j)Pnew =
( )PoId, and (i )pnew = (i )Pold for all j; 1 j < n; j * i andj
* (i)po-. Now note that once (i (i)p is factored out, we
let C = i and R = (i)p ol and the column of cells with the
ith output is set to (i (i )p old). After that, we are only interested
in the images of i - 1, i - 2, * I*,1 under the map Pnew.
Hence, the fact that (i )pnew = i is of no consequence.
Moreover, since (I )Pnew = (i )Pold for all j; 1 < j c n except
for j = i and j = (i)p-jj, the only mapping that must be
performed to obtain Pnew from Pold iS ((i )p O1d)Pnew = (i )Pold.
This just amounts to replacing the old image of (i)p -I by
(i )Poldo

In order to perform the above operations, the factorizer is
equipped with a dual memory system as shown in Fig. 6.

1

12
n Factoriz~er Decoder

n

|R:=(i)p

Rtow
Decoder.

1 2 n

Fig. 5. The organization of control unit for reverse KLW network.

Suppose that the specified permutation p and its inverse p-,
respectively, reside in memories denoted by P and Q with the
associated address and data registers also depicted in the
figure. The factorizer executes the following sequence of
operations for i = n, n - 1, **, 2:

1) Factor (i (i)p-')

C:= i;R:= Q[i]

2) Update p and p -

P[Q[i]] P[i]; Q[P[i]] := Q[i.

Step 1) of the above sequence can easily be implemented by
loading i into the address register QADR and reading Q[i]
into R through QDTR. The second one requires the following
subsequence of operations:

(2.1) PADR :=i; QADR :=i

(2.2) PDTR := P[PADR]; QDTR := Q[QADR]

(2.3) PADR := QDTR; QADR : = PDTR

(2.4) P[PADRI := PDTR; Q[QADR] := QDTR

An example may clarify the steps described above. Letp
(12 3 4 5 6). The following snapshots show the formation of
the factorization p = (63)(41)(32)(21) as well as the changes
in the contents of memories P and Q as i runs through 6, 5,

2 .

Step: 1 2 3 4 5
i= 6 5 4 3 2
C= 6 5 4 3 2
R= 3 5 1 2 1

Step: 1 2 3 4 5
4 4 4 2 2
3 3 3 3 1

P= 6 1 1 X
2 2 2XX
5 5XXX
1 XXXX

Step: 1 2 3 4 5
6 3 3 3 2
444 11

Q= 2 2 2 2X
11 xx
5 5XXX
3 XXXX.

Note that the values of C and R are specified according to the
column and row numbering scheme depicted in Fig. 1. Also
note that X's in P and Q correspond to mappings (i)p = i and
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p Q

Fig. 6. Memory organization for the factorizer.

(i)p-l = i; i = 6, 5, , 2. Finally notice that, when (i
(i)p1) = (i i), i.e., when the coset leader for column i is
identity, the decoder outputs specify that the cells located at C
= i and R = i be set to the coset leader (i (i)p - 1). However,
there is no such cell in column i, and it is obvious that, in this
case, all the cells in column i are to be set to the identity. Thus,
when i c (i)p - 1, the decoder outputs are overridden by a flag
which indicates that all the cells in column i should be set to
the identity. These and other details concerning the internal
logic design of cells are explored further in [17].

VIII. SUMMARY AND CONCLUDING REMARKS

The paper has presented a new approach for permutation
network design and control using decompositions of symmet-
ric groups into cosets. It has been shown that there is a natural
and direct relation between such decompositions and cellular
permutation arrays. This has been demonstrated for two
families of cellular permutation arrays which appeared in [1]
and [9]. Based on these results, linear-time algorithms have
been given to set up these families of networks. As a result, it
has been shown that the O(n log2 n) setup time problem of
optimal permutation networks can be overcome by employing
cellular permutation arrays that contain redundant cells.

In the networks considered here, this redundancy exhibits
itself either directly in terms of cell counts as in KLW
networks or in terms of the total number of connections over
all the cells as in BBC networks. In both cases, the total
number of coset leaders and hence connections is O(n(n -
1)/2) for n inputs while the number of cells in KLW networks
is n (n - 1)/2 and that for BBC networks is n - 1. In general,
the total number of coset leaders is fixed by the decomposition
of Sin and cannot be altered without modifying the subgroup
over which the coset decomposition is based. The cellular
permutation networks considered here are based on the
decomposition given in Theorem 1, and hence they all consist
of n(n - 1)/2 coset leaders. However, these can be
distributed over permutation cells in a variety of ways [15]. If,
on the other hand, permutation networks with fewer coset
leaders are desired then different subgroups must be used in
decompositions of symmetric groups. This possibility is
currently being investigated.

Another aspect of the decomposition approach which has
not been discussed in the paper is its application to fault-
tolerant interconnection network design. Cosets form a natural
basis to partition the elements of En into disjoint sets, and
hence may be used to distinguish among valid and faulty
permutations. The fault tolerance of a permutation network
may thus be thought of as its ability to remain within the coset
that contains the valid permutation despite faults. Further
elaboration of this subject and other applications of the coset
decomposition approach will be deferred to another place.
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